@ https://ntrs.nasa.gov/search.jsp?R=19710026871 2018-07-26T03:28:24+00:00Z

NT-363%7

HEAT TRANSFER TO THE TRANSPIRED
TURBULENT BOUNDARY LAYER

W. M. Kays

Report HMT-14

This study supported
by
The National Science Foundation
NSF GK-2201

and

The National Aeronautics and Space Administration
NGL 05-020-134

CASE FILF
COPY
Thermosciences Division

Department of Mechanical Engineering
Stanford University
Stanford, California

June 1971



HEAT TRANSFER TO THE TRANSPIRED TURBULENT BOUNDARY LAYER

By
W. M. Kays

Report HMT-14

This study supported
by

The National Science Foundation
NSF GK-2201

and

The National Aeronautics and Space Administration
NGL 05-020-134

Thermosciences Division
Department of Mechanical Engineering
Stanford University
Stanford,California

June 1971




Abstract

This paper contains a summarization of five years work on an investi=
gation on heat transfer to the transpired turbulent boundary layer. The
experimental results are presented for friction coefficient and Stanton number
over a wide range of blowing and suction for the case of constant free-stream
velocity, holding constant certain blowing parameters. The problem of the
accelerated turbulent boundary layer with transpiration is considered, experi«
mental data are presented and discussed, and theoretical models for soclution
of the momentum equation under these conditions are presented. Data on turbulent
Prandtl number are presented so that solutions to the energy equation may be
obtained. Some examples of boundary layer heat transfer and friction coefficient
are presented using one of the models discussed, employing a finite difference
solution method.
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Nomenclature

English letter symbols:

A constant in the Van Driest Hypothesis, Eqs. (18) and (20)

AZ value of A% for the case of no transpiration and no pressure gradient

Bt constant in the Evans hypothesis, Eq. (22)

BI value of B+ for the case of no transpiration and no pressure gradient

Bf a friction blowing parameter, (vo/Uw)/(Cf/Z)

bf a friction blowing parameter, (vo/Uw)/(cfo/Z)

B, a heat transfer blowing parameter, (vO/Um)/St

b, a heat transfer blowing parameter, (vo/Uw)/StO

Cf friction coefficient

Cf friction coefficient for the case of no transpiration, at the
° same value of Re62

cp specific heat at constant pressure

C lag constant in Eq. (24)

D mixing~length damping function

F blowing or suction fraction, VW/UQ » m"/G

G, free-stream mass velocity, p U,

&, proportionality factor in Newton's 2nd Law

H boundary layer shape factor, 61/62

h convection heat transfer coefficient

K acceleration parameter, 0)/Ui)(dUw/dx)

k mixing-length constant for the inner region

L mixing~length

Qt turbulence length scale
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mass transfer rate at fluid-surface interface
time-averaged pressure

pressure gradient parameter, --K/(Cf/2)3/2
Prandtl number, ucp/y

turbulent Prandtl number, %ﬁ/qi

heat flux at fluid-surface interface

enthalpy thickness Reynolds number, Asz/u
momentum thickness Reynolds number, GZGm/u
local turbulence Reynolds number, Rt oV /v
x-Reynolds number, XG@/U

Stanton number, h/(Gme)

Stanton number for F = 0 at same ReH

time averaged value of temperature
temperature at fluid-surface interface
free-stream temperature

fluctuating part of temperature

turbulent heat flux

fluctuating part of x-component of velocity
time averaged value of xz-component of velocity
free-stream velocity

turbulent shear stress

u/Vg T 7o

fluctuating part of y-componment of velocity

time averaged value of y-component of velocity

normal direction velocity at fluid-surface interface

a blowing parameter, VW/VgCTO7p
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X distance measured along surface in direction of flow

x+ xV/g T /p /v

co
y distance measured normal to surface
v vV T,/ p /v
+ + )
Yorit value of y  at edge of viscous sublayer

Greek letter symbols:

o thermal diffusivity, +v/(p cp)
Y thermal conductivity
§ momentum boundary layer thickness
8 99 99 percent thickness of momentum boundary layer
v N ~
61 displacement thickness, é (1 - u/Um)dy
[o.0]
62 momentum thickness, é a - u/Uw)(u/Um)dy
A thermal boundary layer thickness
A2 enthalpy thickness of thermal boundary layer,

§Q) (e - e )/ (e - ) by

& eddy diffusivity for heat

& eddy diffusivity for momentum

A a mixing-length constant for the outer region
u dynamic viscosity

v kinematic viscosity, u/p

o) density

T total shear stress

T shear stress at wall surface

T, turbulent component of total shear stress

T+ T/TO




Introduction - Interest in the behavior of the transpired turbulent boundary

layer extends back at least to the early 1950's when transpiration was first
being investigated as a means of cooling aerodynamic surfaces under high
velocity flight conditions. This interest is reflected in some of the pioneer
papers and reports of Rubesin [1], and the paper of Dorrance and Dore [2].
While these contributions were on the theoretical side, experimental work
began to take place, notably in the Chemical Engineering Department at M.I.T.,
and is reflected in the papers of Mickley et al [3,4]. The early 1960's saw
interest spreading with significant contributions from Great Britain, in
particular those of Stevenson [5], McQuaid [6], Black and Sarnecki [7], and
contributions from the Soviet Union, for example Romanenko and Karchenko [ 8],
and Kutateladse and Leont'ev [9]. During the past five years the number of
contributions has grown into dozens. A complete bibliography, especially
since 1960, is outside of the scope and purposes of the present paper, and
the above citations are simply noted to provide some idea of interest inten~
sity as a function of time.

Transpiration from a solid surface over which a fluid is flowing, and
on which a boundary layer is developing, is of interest in a number of guite
different types of applications. 1In the typical transpiration cooling applica=-
tion, the solid surface is constructed f{rowm some kind of porous soiid material.
Cooling fluid, chemically the same as the free-stream, is then forced through
the surface with the objective of protecting the surface from a hot free-stream.
This is a boundary layer problem for which the normal component of velocity at
the solid-fluid interface is non-zero, but otherwise the same momentum and

energy boundary layer differential equations must be solved as for the




non-transpired boundary layer, A variation on this problem occurs when
the cooling fluid is a chemically different specie than the free~stream
fluid. For example, helium might be injected as a coolant to protect a
surface from a high temperature air free-stream. In this case the
mass-diffusion equation of the boundary layer must be solved in addition
to the momentum and energy equations. There are obviously similarities
between these two types of problems, but also fundamental differences,
Both are "mass transfer" problems in the sense that mass is transferred
across the fluid-solid interface, but the latter is also a mass diffusion
problem, while the former is not.

Another transpiration problem arises when there is evaporation oz
sublimation from an interface into a boundary layer, or condemnsation onto
the interface. A further variation on the problem arises when there is
chemical reaction either within the boundary layer or at the surface.

In any of the cases cited, the direction of the flow normal to
the surface at the interface could be into the surface, or it could be out
of the surface. The terms "blowing" and "suction" are frequently used to
denote the direction of flow at the interface, while the word "transpiration"
generally is taken to embrace both cases. Suction is sometimes used as a
scheme for aerodynamic boundary layer control because it is possible to in-
hibit or prevent boundary layer separation by suction.

These various types of applications suggest why chemical, mechanical
and aeronautical engineers have all made significant contributions to the
theory, and the terminology to a certain extent reflects these various origins

of interest.




In 1965, the author and his colleagues embarked on a comprehensive
experimental investigation of heat transfer to the transpired turbulent
boundary layer with the objectives of resolving some of the contradictions
in the earlier data, filling in obvious holes, and ultimately of obtaining
necessary information for a more fundamental theory so that adequate boundary
layer predictions can be made over a wide variety of operating conditions.

To date, this work has been entirely concerned with the single chemical
component problem (i.e., no mass diffusion) using air as the working medium,
and employing small temperature differences for the heat transfer work, so
that it is effectively the constant property boundary layer that is considered.
At the present time, the technical application that provides the major impetus
for this program is the prospect of cooling gas turbine blades by transpira=-
tion. This application involves the transpired boundary layer with large
temperature differences, as well as other complications that will be briefly
discussed at the end of the paper, but a fundamental understanding of the
behavior of the idealized low-velocity, constant property case is essential

if any significant progress is going to be made in the more complex
applications.

The objective of this paper is to present a summary of some of the
more significant results and conclusions that have resulted from this program.
Much of what will be presented (although not all) has appeared in various re-
ports and papers, but significant portions of the work have now been completed,
and it seems an appropriate time to attempt to summarize.

The general problem considered is perhaps best illustrated by reference
to Fig. 1. Air flows at a steady rate along a flat surface which is porous,

and through which air can be forced into the boundary layer or withdrawn from




the boundary layer (blowing or suction). It is presumed that the surface
is aerodynamically smooth, which means that the transpiration holes are
small relative to the thickness of the laminar sublayer of the boundary
layer, and that their spacing is small relative to the thickness of the
laminar sublayer. It is presumed that the solid surface is a heat con~
ductor, and that heat can be conducted to or from the surface. It is
further presumed that the surface construction is such that the transpired
fluid is in thermal equilibrium with the solid surface at the interface.
In general, we would like to consider the case where the mass transfer
rate #'" (i.e., the transpiration rate) is any arbitrary function of
distance x along the surface, where the convection heat transfer rate

4" is any arbitrary function of distance x along the surface, and/or
the surface temperature to is any arbitrary function of x . We would
like to consider the case where the free-stream velocity U, may vary in
any arbitrary manner with x , but we will restrict the free-stream tem-
perature t = to a constant. The boundary layer is two-dimensional, with
the coordinate y being used to measure the distance normal to the surface.
Under these conditions, we are interested in the development of a momentum
boundary layer, characterized by a thickness ¢§ , and a thermal boundary
layer characterized by a thickness A .

It should be added that the problem described, but with the boundary
layer laminar rather than turbulent, is of equal interest in many applications
including the turbine blade cooling one. However, a wealth of closed form
solutions exist for particular idealized cases, and with modern finite~difference
calculation methods the laminar problem poses no particular difficulty even for

very complicated boundary conditions.




The remainder of the paper is in six sections. The case of a constant
free-stream velocity is considered first. Experimental results covering the en-
tire range of blowing and suction are presented for the case of a constant
rate of transpiration and a constant surface temperature. Methods of extend~
ing these results to problems of arbitrarily varying transpiration rate and
arbitrarily varying surface temperature, using the integral equations of the
boundary layer, are then discussed.

Next the problem of an accelerated free-stream velocity is considered.
It will be seen that simple correlations together with the integral equations
of the boundary layer no longer appear adequate as tools for performance pre-
diction, and a more fundamental theory is needed.

The two sections following contain a discussion of some models that
can be used for direct solution (by finite difference methods) of the momentum
and energy differential equations of the boundary layer. Constants for use
in these models, derived from experimental data, are presented.

Finally, some examples of predictions using one of the models applied
to some very difficult cases are presented. The paper ends with a discussion

of some of the future problems which must be considered.




The Case of Constant Free-Stream Velocity - It is first instructive to

examine the momentum integral equation of the boundary layer, particularized
to the case of constant properties and constant free-stream velocity.
ds
—_— = Cf/2 + VO/UOo (1)
dx
An alternative form is obtained if the friction coefficient is
factored from the right-hand side, and if the resulting term containing the

transpiration velocity v, is defined as a "blowing parameter", Bf

d62 v /U
—= = (C /2|1 + = (2)
dx Cf/2
or
dReM
= (Cf/Z)(l + Bf) (3
dReX

In laminar boundary layer theory, similarity solutions to the momentum

equations are obtained when B_ is maintained constant along the surface.

Re-l/Z
pd

£
Since for a laminar boundary layer Cf/2 varies as , similar wve-
locity profiles are then evidently obtained if the rate of blowing (or suction)
decreases along the surface as the square root of distance x . For a turbu-
lent boundary layer, an analogous situation obtains. Bf can be interpreted
physically as the ratio of the transpired momentum rate to the shear force.

If this ratio is maintained constant along the surface, similar profiles are

obtained for a laminar boundary layer, and for a turbulent boundary layer a

so-called "equilibrium" boundary layer is obtained, one that possesses outer




region similarity of velocity profiles. However, in the case of the turbu-

lent boundary layer, Cf/2 tends to vary with distance x approximately as

-0.2
X

, SO0 constant B corresponds to a blowing rate, VO/Uoo , which

. . . -0.2
decreases in the direction of flow as x .

£

The constant Bf boundary layer thus appears to be a fundamental
case, and was a case studied by Simpson, et al [10]. Simpson
alsc did extensive testing holding VO/Uoo constant rather than Bf .
(Hereafter VO/U& will be referred to as F , the blowing fraction. Note
also that since only5the constant density case is being discussed,

VO/UOo =a"/G, , i.e., F 1is a mass flux ratio, and this is how it should
be interpreted in compressible flow applications.)

One of the conclusions from Simpson's work is that Cf/2 can be
expressed as a function of the momentum thickness Reynolds number, ReM s

and that virtually the same function or relaticnship is obtained for ex-

periments at constant F as for experiments at constant B In fact,

£ o
this function seems to be remarkably independent of how F varies along the
surface, and it is only for step changes in F that any appreciable differ~
ence can be noted. |

A further point of interest that can be seen in the momentum integral
equation, Eq. (1), is that when VO/UQ = F 1is negative, the possibility
exists that the right-hand side of the equaticn will go tc zero, leading to
a situation where the momentum thickness of the boundary layer does not grow
with x . As a matter of fact, this is a situation that will always be
approached where F 1is maintained constant and negative. Cf/2 has a de-

creasing tendency with increasing momentum thickness, starting indefinitely

high at the beginning of the plate, and so regardless of the value of F




this point of equilibrium will ultimately be reached. This is commonly

called the "asymptotic suction layer'. Note that for this condition Bf

is equal to -1 , and thus -1 represents a lower limit on Bf .

Simpson's experiments can be correlated within the limits of the

experimental uncertainty of the data itself by the following equation.

C,/2 = 0.0130 Rel-;l'zs [2n(L + Bf)/Bf]O'77 (%)

A plot of Eq. (4) is shown on Fig. 2. Since Cf/2 is contained within

Bf » Eq. (4) is a little awkward to use. In Fig. 2, F is emplovyed as

a parameter as well as Bf , taking advantage of the experimental fact

that the same functional relationship seems to be obtained for comnstant

F experiments as for constant B experiments.

£

The fact that moving along a constant B line leads to decressing

f
values of F can be clearly seen. Note also that the lines for negative
constant F are slightly concave upwards. If extended, these lines will
approach values of Cf/2 equal to the negative of F .

An alternative way of presenting these results is shown in Fig. 3
where the ratio of Cf to the value of Cf , at the same momentum thick-
ness Reynolds number for the case of no transpiration, is plotted as a
function of another blowing parameter, bf . bf differs from Bf in that
F 1is divided by the value of Cf/2 for no transpiration, at the same mo-
mentum thickness Reynolds number, rather than with respect to the local
value of Cf/2 . bf is thus a more convenient parameter to use in pra-
senting data on Cf because it does not contain the value of Cf sought.

Interestingly, Eq. (4) plots as a single line on this diagram, and illustrates




vividly the influence of blowing and suction on the friction coefficient.
Also superimposed on the diagram are the results of the laminar similarity
solutions mentioned earlier. The behavior is quite analogous, especially
on the suction side, but it should be noted that the laminar similarity
solution does lead to a zero value of Cf at bf = 3.47 . This point is
generally referred to as the "blow-off" point, and it is the value at which
the boundary layer is literally blown off the wall. However, Eq. (4) only
approaches zero and does not indicate a definite blow-off point. There is
no reason to suppose that blow-off is not just as real a phenomena for the
turbulent boundary layer as for a laminar boundary layer, but it is ex~
tremely difficult to detect experimentally because the uncertainty in mea-
suring Cf becomes indefinitely large as Cf approaches zero. The fact
that Eq. (4) does not indicate hlow-off should only be interpreted as a
deficiency in the form of the empirical equation used. A popular rule of
thumb is that blow-off for a turbulent boundary layer will occur at approxi-
mately F = 0.0l., and this rule of thumb is certainly not inconsistent with
the results on Fig. 3 when it is noted that the uncertainty in cffcfo is
of the order of magnitude 0.1 at the right-hand extreme of the diagram.

The shape factor of the boundary layer, H , is often of interest,

and the following equation is an empirical representation of Simpson's mea-

suremeunts for constant free-stream velocity.
B = 1.0/{1.0 - 3.1/ 720 + 82 + @+ 0635 3P ()

A plot of Eq. (5) is shown on Fig. 4. The significant point is that

blowing leads to high values of H , and that for F approaching 0.01 H




becomes greater than 2.0. It is perhaps worth noting that for the non-
transpired boundary layer in an adverse pressure gradient, separation
generally tends to occur when H is somewhere above 2.0. This is one

of many instances of similarity between the behavior of the transpired
flat-plate boundary layer with positive transpiration, and the adverse
pressure gradient non-transpired boundary layer.

Tt ic only fair to remark that the friction coefficient data

‘of Simpson, upon which this entire discussion is based, while unques~
tionably the most extensive data available, has been the subject of

some controversy. The case against it has been very well put by Squire
[11], who feels that Simpson's friction coefficients are too high. There
is ample room for argument because of the very considerable difficulty in
measuring friction coefficients, and the different ways in which experi-
mental data can be interpreted. The writer would only add at this time
that friction coefficients close to Simpson's have been measured in sub-
sequent work on the same apparatus, but in connection with accelerating
flows, and where other methods of data interpretation have been used.
Furthermore, there is an internal consistency between Simpson’s data and
the heat transfer data to be discussed shortly. There seems no question
that the experimental uncertainty in the heat transfer data is less than
for the friction coefficient data because the heat transfer rates are
measured by a direct method. The internal consistency shows up particularly
in the theoretical models to be discussed later; a single, reasonable model
can be used to predict both the heat transfer data and the friction coeffi-

cient data equally well.
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Turning now to the case of heat transfer with transpiration, but
with free-stream velocity constant and surface temperature constant, con-
sider first the energy integral equation of the boundary layer, particu~
larized to the case of constant properties, constant free-~stream velocity,

and constant surface temperature.
—= = St + VO/UOO (5)

A heat transfer blowing parameter, Bh , 1is defined in a manner

completely analogous to the definition of the friction blowing parameter.

dAz v /Uoo
—= = stf1 + = (6)
dx St
dR

H = St(1 + Bh) (7>
dReX

The blowing parameter B, can be interpreted physically as the

h
ratio of the transpired thermal energy to the conducted thermal energy.
Again, it is not surprising that holding this parameter constant along a
surface leads to similarity of temperature profiles in the laminar boundary
layer case, and apparently leads to outer region temperature profile simi-
larity in the turbulent boundary layer case. There is also another physical

significance to constant B In the case of blowing, if the transpired

ho*
fluid originates from a constant temperature source or plenum below the sur-—

face, and if there is no independent energy source within the surface wall

11




itself, constant Bh yields a comstant surface temperature tO . In other
words, to obtain a constant surface temperature by transpiring a fluid which
starts out at a single uniform temperature, it is necessary for the blowing
fraction F to decrease along the surface in such a manner as to hold Eh
constant. Experimentally it is found that F must decrease as approximately
the 0.2 power of x , as in the case of constant Bf .

Note further that a constant negative value of F must lead tc an
asymtotic suction layer for the same reasons as were discussed for the mo-
mentum boundary layer. In other words, under conditions of constant suction,
Stanton number approaches’a minimum, equal to the negative of F .

The experiments of Moffat and Kays [12], and of Whitten, et al [13],

indicate that although B probably represents the more fundamental case,

h
constant F yields to all intents and purposes the same value of Stanton
number for a given value of enthalpy thickness Reynolds number, ReH . and
F . 1In fact, Whitten's results indicate that F can vary rather considerably
along the surface with negligible effect upon this relationship. The wvery

extensive data of Moffat, and of Whitten, for uniform surface temperature,

can be represented quite adequately by the following empirical equation.

0.25

St = 0.0128 Pr 02 [gn(l + B,) /Bh]l'25[1 +3B (8)

nl

Equation (8) is plotted on Fig. 5 where both Bh and the more con-
venient F are used as parameters. It should be emphasized that strictly

speaking these data apply only for cases where the virtual origin of both

the thermal and momentum boundary layers is the same, which means that the

12




thermal boundary layer thickness is of the same order magnitude as the
momentum boundary layer thickness (actually about 10% greater for Pr = 0.7
and F =0 ). If the thermal boundary layer thickness is substantially
different from the momentum boundary layer thickness, and this can occur
when the surface temperature varies or when the virtual origin of the
thermal boundary layer differs from that of the momentum boundary laver,
somewﬁat different results will be obtained, although the effects are not
large., This is a problem that can best be discussed later in connection
with a theoretical model of the thermal boundary layer.

An alternative method of presentation of these results is shown on
Figure 6. Here everything is quite analogous to the very similar results
for friction coefficient on Figure 3, A more convenient blowing parameter,
bh = F/StO , is introduced, and the laminar similarity solution results are
superimposed. In addition, the following equation proposed by Kutateladze

and Leont'ev [9], based on analytic considerations, is included.
Se/St_ = (1 - b, /4)?2 (9)
o h !

Figure 6 illustrates very graphically how blowing decreases the heat
transfer coefficient, and this, of course, is the primary reason for the
interest in transpiration as a method of protecting surfaces against high
temperature fluids.

The same comments regarding blow-off as were made in connection with
the friction coefficients apply here. It is, however, of interest to note

that the laminar similarity solution for heat transfer does not really indicate




a blow-off point, because for Pr = ,70 the Stanton number is still greater
than zero at the point where the friction coefficient has reached zero.

The Kutateladze and Leont'ev solution predicts blow-off at b, = L,0 , but

h
over most of the range it is very close to the laminar solution. The experiments
of Moffat, and of Whitten, include extensive amounts of data for bh equal to 4
and greater for which St is measurably above zero. It thus appears that the
Kutateladze and Leont'ev solution predicts blow~off a little early.

It has been noted previously that both the friction coefficient and the
Stanton number tend to be rather strong functions of local conditions along
the surface rather than the history of the boundary layer up to the point in
question. In other words, it has been stated that Stanton number tends to
be primarily a function of local enthalpy thickness Reynolds number, R@H s
and F , and is relatively independent of how F has varied up to the point
in question. Figures 7 and 8, which show some of the experimental data of
Whitten et al [13] illustrate this point very well., Both a step down and a
step up in F are shown. Although there is in both cases a detectable
recovery regiomn, most of the adjustment to the new boundary condition cceurs
very rapidly. These figures represent extreme cases, so it is not surprising
that when there are continuous variations of F the recovery is virtually
undetectable.

The friction coefficient behavior is substantially the same, although
it is much more difficult to accurately measure friction coefficients just
following a step in blowing.

The experimental facts that Cf/2 is primarily a function only of

ReM and F , and St is a function primarily only of ReH and F , lead to

14




a relatively simple approximate procedure for calculating Cf and St along
a surface where F varies in some arbitrary manner. One need only sub~
stitute Eq. (4) into Eq. (3) and Eq. (8) into Eq. (7), and one has simple
differential equations for ReM and ReH which may be integrated, at least
numerically, to yield momentum and enthalpy thickness Reynolds numbers as
functions of x . Then Eqs. (4) and (8) are used to determine C./2 and
St at each local point. This procedure works remarkably well, although it
is, of course, restricted to the constant property boundary layer with
constant free~stream velocity, and in the case of the energy equation, we
have so far restricted consideration to the constant surface temperature
problem.

Whitten [13] also presents data for step changes in surface temperature
with transpiration, and includes step changes in tramspiration rates. With
these results it is possible to use the method of superposition to build up
solutions to the energy equation for cases where both F and surface tempera-
ture vary in any arbitrary manner along the surface, and indeed Whitten has
done just this [14]. However, at some point one must question whether it is
not more fruitful to attempt to devise a more fundamental model of the
turbulent transport processes so that all manner of variatioms in boundary
conditions, and including varying fluid properties and viscous dissipation,
can be handled with a single consistent theory based on the differential
equations of the boundary layer rather than the integral equations. The
constant property, constant free-stream velocity problem with arbitrarily
varying F and arbitrarily varying to s probably represents about the limit

of integral methods, at least where reasonable precision is desired, although

15




integral methods can be pushed considerably farther where low precision is

adequate (see for example, Kays [15]).

16




The Case of Varying Free-Stream Velocity - The momentum and energy integral

equations, for comstant properties and constant surface temperature, but now
including a variable free-stream velocity, may be written in the following
form:

dRe

M cf/z + F - K(1 + H)ReM (10)
dRe
x
dReH

=St + F (11)
dReX

Udx/v 3 K= (/U2 (dU,/dx)

where dRe
x

dRe d(UwGZ)/v 3 dReH = d(UmAz)/v

One thing that is immediately apparent from these equations is that
the pressure gradient, which is incorporated implicitly in the acceleration
parameter K , has a direct influence on the development of the momentum
equation, but any influence on the energy equation must be an indirect one
coming in through the turbulent transport properties and the velocity profile.
An important simplifying feature of the previously discussed constant free-
stream velocity, constant surface temperature problem is that the momentum
and thermal boundary layers tend to grow together, and this is one reason
why relations such as Eq. (8) hold up remarkably well in the face of arbi-
trarily varying F along the surface. It should be apparent from Egs. (10)
and (11) that such will not be the case when free-stream velocity wvaries.

Before examining the kind of heat transfer behavior that is obtained

17




when free-stream velocity varies, it is worthwhile to look at some more
of the implications of Egs. (10) and (11). A particularly interesting
case arises when the acceleration parameter K is a positive number and
constant. This is a case of an accelerated flow, and in fact, it is the
accelerated flow that is obtained when the fluid is confined between two
straight but converging planes. The possibility exists, according to
Eq. (10), that an equilibrium will be reached such that ReM remains
constant, and indeed such flows are observed experimentally. There are
obvious experimental advantages in being able to hold such an important
parameter as ReM constant, and so the constant-K boundary layer has
been extensively studied. Most of the experimental data obtained by the
author and his colleagues for varying free-stream velocity have been for
constant~K accelerating boundary layers. According to Eq. (11), however,
the thermal boundary layer will continue to grow even though the momentum
boundary layer has reached the equilibrium, or asymptotic condition.

It has been cbserved experimentally that strong acceleration, i.e.,
large K , will lead to a "retransition" of the turbulent boundary layer
to a laminar boundary layer. One might predict that this would occur simply
from examination of Eq. (10) alone. A large positive value of K will
cause Re,, to decrease, and if K 1is sufficiently large Re  will be

M M

pushed down into the region of stable laminar boundary layers. This is

not to say the Re is necessarily the sole criterion for '

M 'retransition',

but it certainly must be an important one. Assuming for the moment that

some critical value of Re, (say, 200-400) is the dominant criterion,

M

Eq. (10) immediately suggests that positive values of F will tend to

18




inhibit "retransition", while negative values will aid it. This is actually
what is experimentally observed. For F = 0 ''retransition" or "laminarization"
will occur whenever K exceeds about 3 x 10—6>for an extended distance along

a surface. For F positive (blowing) a turbulent boundary layer can be main-
tained at considerably higher values of K without "laminarization'. For F
negative (suction), both "laminarization'" and the asymptotic suction laver are
approached at values of K lower than 3 x 10—6, and it is very difficult to
tell which comes first when examining experimental data.

It is experimentally observed for the case of no transpiration,

F =0, that laminarization causes a very substantial reduction in Stanton
number, but that this phenomena is a continuous function of K rather than

an abrupt change at some critical value of K . In other words, at any posi-
tive value of K there will be some reduction in Stanton number (relative to
what the Stanton number would have been at the same value of ReH for K = 0).
On the basis of these facts, one might be led to conclude that blowing, under
accelerating free-stream conditions, would lessen the decreasing Stanton num-
ber tendency, while suction would enhance it.

On Fig. 9, the results of two test~runs reported by Thielbahr,et al [16]
are plotted. In the upper part of the diagram, there is a case of mild blow-
ing, F = 0.001 , starting with constant free-stream velocity, followed by a
relatively strong acceleration, K = 1.47 x 10_6 s and finally reverting to
constant free-stream velocity. The acceleration does, indeed, appear to cause
a small reduction in Stanton number. At the end of the acceleration, there
appears to be a start of a recovery back toward the line for K = 0 , but it
is only a partial recovery. A reason for the failure of recovery would be

found if one examined the values of ReM and ReH in the recovery region.
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ReH is very much greater than ReM , and Re catches up only very slowly,

M
a fact that an examination of Egqs. (10) and (11) would make apparent.

The second set of data on Fig. 9 shows a case of a rather strongly
blown boundary layer, F = 0.006 , that develops at constant free-stream
velocity, and then is subjected to a relatively mild acceleration,
K=0.8x 10"6 . Surprisingly, the effect of acceleration is precisely
the reverse of the previous case. Stanton number tends to increase above
the value for no acceleration.

Attention has been drawn to these examples merely to illustrate
the fact that the combination of transpiration and varying free-stream
velocity results in complex interactions that are not going toc be under~
stood unless the basic turbulent transport mechanisms are studied in more
detail. It does not appear practicable or fruitful to attempt to describe

the kind of behavior shown on Fig. 9 by use of the integral equations and

integral correlations. Let us examine a more fundamental approach.
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Some Models for Solution of the Momentum Differenmtial Equation of the

Boundary Layer - The digital computer has, in a period of no more than

five or six years, revolutionized turbulent boundary layer theory and
turbulent boundary layer prediction methods. Stable, accurate finite-differ-
ence solutions to the momentum, energy, and mass diffusion equations of the
boundary layer have become practicable. Fast, economic procedures are
available which include the possibility of an infinite variety of boundary
conditions as well as the inclusion of variable fluid properties, viscous
dissipation, chemical reaction, etc. It is not the present intention to
extoll the virtues of any particular procedure; actually there are several
very good ones in common use. However, the accuracy of any of the calcu-
lation procedures depends upon the basic physics introduced into it, and
this is our present concern.

The time-average momentum equation of the boundary layer, particular-
ized for the moment to constant fluid properties, and neglecting normal

turbulent stresses, may be written as follows:

— — - dp
—Odu  “0du 3 du T 1 E_C_ - \
u8x+v8y ay\)ay—-uvi]+pa—};—0 (12)

If the turbulent shear stress u'v’

were known at all points in the
boundary layer, the momentum problem simply becomes one of solution of Eg.
(12) for any desired boundary conditions, including transpiration., As dis-

cussed above, numerous adequate finite-difference methods are available to

do this.
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Although progress continues to be made in turbulent transport theory
in general, and turbulent boundary layer theory in particular, it is still
fair to say that there is as yet no truly fundamental turbulence theory that
may be used as a universal starting point for solution of turbulence problems.
Turbulent boundary layer theory has gone through, and continues to go through,
a series of ztages invelving successively higher orders of sophistication.
Each step in this process involves the correlation of experimental data at a
more fundamental level, opening up the possibility of solving successively
broader ranges of problems with a single consistent set of empirical constants.
The information and calculating procedures to be presented here do not represent
any very bold steps toward a more general theory. Higher order models are
presently being investigated by numerous researchers, and hopefully will lead
to theories that embrace still broader classes of applications, although
probably at the price of complexity and computation cost. In the meantime,
it will be demonstrated here that a relatively simple model can be used to
adequately predict the behavior of the transpired boundary layer over a
sufficiently wide range of conditions to make it a very practicable tool for
engineering design.

We will first introduce the concept of eddy diffusivity for momentum,

%Y s as a convenient way of expressing the turbulent shear stress.
i3

. e u
EMay (13)

Already, we are in the realm of theoretical controversy, but the eddy

diffusivity concept has the computational virtue of allowing one to use the
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same computation program for both laminar and turbulent boundary layer. Since
most turbulent boundary layers grow out of laminar boundary layers, the ad-
vantage is obvious.

It is convenient to visualize the turbulent boundary layer as con-
sisting of an inner wall-dominated region, and am outer region which physic-
ally occupies most of the thicknass of the boundary layer. However, for moct
applications the inner region turns out to be by far the more important one,
and it is to this region that we will now focus primary attention.

The inner region is characterized by a region immediately adjacent to
the wall in which viscous forces predominate (u'v' approaches zero), and a
region farther out in which momentum transfer is almost entirely by turbulent
transport processes, but in which the scale and intensity of the turbulence
is still strongly dependent upon the proximity of the wall. Between these
is a transition region in which both mechanisms are important in varying degrees.
Some analysts prefer to represent the entire inner region by an empirically
established "law-of-the~wall', but probably the most significant conclusion
that has come out of the experimental work upon which this paper is based is
that tHe thickness of the viscous~dominated part of the inner region is
strongly dependent upon both transpiration and free-stream pressure gradient,
and thus no single law-of-the-wall can be adequate.

The Prandtl mixing=-length theory, despite much criticism for many
years, still provides a remarkably adequate basis for describing the turbulent
momentum transport process in the inner region. The mixing-length, £ , is
defined such that it is related to the eddy diffusivity for momentum and the

mean velocity gradient by the following equation:
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YR (14)

Outside of the viscous-dominated region immediately adjacent to the
wall, the mixing-length in the inner region of the boundary layer seems to
be propoxtional to distance y from the wall, with a proportionality factor,
k , which can be assumed to be independent of either tramspiration rate or
pressure gradient. Whether or not k is a truly universal constant is not
highly important, because another constant to be described shortly can be
used to absorb any dependence on transpiration or pressure gradient; the
experimental data are not sufficiently accurate to justify finer discrimination.
Thus we will model the region outside of the viscous near-wall region (which
we will now term the viscous sublayer), but inside of the outer, or '"wake',

region, by:

The viscous sublayer can be modelled in a simple way by introducing a
damping function that forces the mixing-length £ to zero at the wall,
Designating the damping function as D , the mixing-length may then be

expressed as:

L = kyD (16)
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The damping function D can be any function that is equal to zero
at the wall and equal to unity at large values of y , but obviously some
functions will model the actual experimental data better than others. The
simplest possible damping function idealizes the sublayer as a finite, purely

viscous region as follows:

(17)

(o}

]
—
L ]
O
<
<

+ . . : .
y  is the non-dimensional distance from the wall expressed in

+ . . .
so-called wall coordinates. Y. is then the effective viscous sublayer

rit
thickness. For the flat-plate case with no pressure gradient and no trans-

+ . :
piration, vy is measured to be approximately 11.0 . For accelerating

crit
flows * i for t irati * decreases, and £ £
o . T n . c n r suct ]
> Yopip increases, for tramspiration y ... s or suction
+ . . .
Yopip LRCTeases. A reasonably adequate scheme can be developed using this

very simple damping function, its main deficiency being that it does not
model the veiocity profile very well in the y+ range 5 to 30,

Another scheme which is very popular today was first suggested by
Van Driest [17]. The Van Driest damping function is exponential, so that
the influenée of the viscous region decays smoothly from the wall and is
still felt as far out y+ = 50 , The simplest version of the Van Driest

damping function is that given in the following equation:

+ +
D= 1.0~ exp (=y /A") (18)
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In this case A+ becomes an effective viscous sublayer thickness that

must be established experimentally. For the flat-plate case, A+ = 26,0

is approximately what is obtained. However, the precise value of A

depends to a certain extent upon the value of the mixing-length constant k .
Fig. 10 shows the values of A+ that are obtained for differing values of

k  to yield identical values of u+ at an arbitrary y+ = 80.0 . There is
some evidence that at low Re, , i.e., below 6000, k tends to increase

(see Simpson [18]), but the data upon which this paper is based are not
conclusive in‘this regard, and k = O.44 is used for all of the illustrative
calculations to follow. Those preferring other values of k can use Fig.

10 as a basis for changing all of the functions, as will be seen later.

+ +
Like ¥y » A is found to be a function of both a pressure gradient

crit
parameter and a transpiration parameter (and perhaps other things yet to be
investigated).
. . . + ; A
The non-dimensional distance from the wall y  contains within it
+ . +
the wall shear stress T, A is simply the value of y  at the
effective outer edge of the sublayer, and thus is also normalized with respect

to T, ° It can be argued that in the region under comnsideration, a local

Reynolds number of turbulence can be defined as
Re = Qt Vuivi/v = L.V gCTt7p /v (19)

Kt > the turbulence length scale, is effectively equal to the

mixing-length £ = ky . Thus,

Re, =ky/ g T ./0 /v (192)
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In the flat-plate case, the shear stress -T is essentially equal to
To out to a distance well beyond the viscous sublayer, so that Ret is
+ + R ‘s i
equal to ky » Thus A can be interpreted as a critical value of the
local Reynolds number of turbulence, which determines the viscous sublayer

thickness.

fact that for flows with pressure gradients in the flow direction, or for
transpired boundary layers, the local shear stress can vary markedly with vy
in the region near the wall, in which case the local shear stress ought to
be used in the damping function rather than the wall shear stress. This
notion has led to the following alternmative form for the Van Driest damping

function

D = 1,0 - exp (-y+\/'f—+ /A7) (20)

where 1@ = T/TO
Eq.’(QO) is appealing because it immediately suggests that for strongly
accelerating flows, where T+ decreases very sharply with increasing y+ s
it would be possible to have a sufficiently strong pressure gradient so that
D would remain a very small number throughout the boundary layer., This, of
course, would correspond to the observed phenomena of laminarization. In
other words, this would be a situation where Ret never exceeds a critical
value of the Reynolds number of turbulence, A+ > and the entire boundary
layer remains laminar. Similarly, the thinning of the laminar sublayer that is
observed for blowing is correctly modelled, as well as the opposite trend for

suction. These features have led some analysts to prefer Eq. (20) over




Eq. (18) as a basis for defining A+ o« It is important to recognize this
difference (and there are still other schemes) because otherwise it is
difficult to compare the results of different workers.

Despite the fact that Eq. (20) with AT = 26.0 yields the trends
that are observed experimentally, the observed effects are considerably
greater. Thus for transpiration and/or pressure gradient it still becomes
necessary to express A+ as a function of a transpiration parameter and a
pressure gradient parameﬁer. Using wall coordinates, these are respectively
vg and P (defined in the Nomenclature). All that is accomplished by
using Eq. (20) in preference to Eq. (18) is to somewhat lessen the dependence
of A+ upon these parameters.

Values of A+ as defined by Eq. (20) have been determined from a wide
range of experimental velocity profiles for blowing, suction, acceleration,
and combinations of acceleration and transpiration, from the work of Simpson
et al [10], Julien et al [19], and Loyd et al [20]. The following equation is
an empirical correlation of these results and fits them all with a2 tolerance
of about +10 percent.

+
A" = . > (21)

-

+
+ 5.86 P
2.15 [YW f (1 + 5.0 v$)_J +1

where A: is the value of A+ for no transpiration and no pressure
gradient, as taken from Fig. 10. Eq. (21) is plotted on Figure 11 for the
case of k = O.44 . Here the effects of a favorable pressure gradient, and
the effects of transpiration are clearly seen., Although the equation itself
extends to positive values of P+ ) and may well be valid there, the experi-
mental data upon which Eq. (21) is based are all for the case of accelerating
flows (negative 3 ).
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Another damping function, proposed by Evans et al [21], utilizes a

linear function as follows:

[
Pt
°
O
O
<
v
o=
-+
o~
I\
no
et

In this case B+ becomes an effective viscous sublayer thickness. This
function involves a discontinuity, but only in D , not in either mixing-length
or the resulting velocity profile., For very high Prandtl number fluids, the heat
transfer behavior turns out to be very sensitive to the behavior of the damping
function at small values of y+ » It is important to note that the Van Driest
function is also linear at small values of y+ s> SO either scheme seems
equally attracFive from this point of view. (Both schemes result in ¢

o
varying as y as the wall is approached). The Evans damping function seems

M

to give velocity profiles that are a little closer to the experimental data
+
at values of yv < 100 , and therefore is especially attractive for low Reynolds
number work.
. + + .

Like A > the value of B depends to a certain extent upon the value

of mixing-length constant k wused. Fig. 10 shows this dependence.
+

Values of B have been determined from the experimental data cited

above, and these results are correlated within about +10 percent by the

following equation.

B == (23)

+
9.0 v + 3:33F |

1.0 + 4.0 v
w
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Again, BZ is taken from Figure 10. Eq. (23) is plotted on Fig. 12
for the case of k = O.44t . The behavior is very similar to that of ﬁ%‘;
there is a somewhat stronger effect of v; and P+ » but this is due to the
fact that Eq. (20) contains the shear stress ratio T . Had the comparison
been made with A’ defined as in Eq. (18), it would be found that 8" differs
from A+ by almost a constant factor.

Figs. 13 and 1k show examples of the inner regiom velocity profiles
(i.e., the law-of-the=wall) as predicted by integration of Eq. (12) using
the B+ scheme, and a comparison with experimental data, in the y+ range
10 to 100 (the temperature profile on Fig. 13 will be discussed presently.)
The data on Fig. 13 are from several test runs for v; = 0.0 and P+ = 0.0 ;
they correspond closely to the data that are generally found in the literature
for this basic case. Fig. 14 shows two cases of blowing alone, and one case
of a combination of blowing and acceleration. As can be seen, the prediction
is excellent; the A+ scheme is also quite adequate, but slightly underpredicts
u+ in the y+ range 10-50,

A word should now be said about the reasons for the observed dependence
of A+ or B+ upon P+ and v$ . It was suggested earlier that the
outer edge of the viscous sublayer might be characterized by some critical
value of the local Reynolds number of turbulence, Eq. (19), and indeed this
hypothesis does yield the correct trends with vz and P+ o This scheme
applied to A+ yvields somewhat better results than if applied to yixi?
If applied to B+ , it works better still. Since each of these three schemes
employs an effective sublayer thickness that is greater than the previocus one,

+
it appears possible that the value of y  at which fully developed self-sus-

taining turbulence obtains, and therefore at which the Reynolds number of
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turbulence has exceeded some critical value, is at a value of y+ greater
than the effective sublayer thickness used in these models. An investigation
by Andersen [22] based on the experimental data cited above, has revealed
the interesting fact that if y+ equal to about 2 times B+ is chosen as
the critical point, the local Reynolds number of turbulence is very close

to the same number for all of the data examined. These data include some

37 test runs covering a wide range of transpiration, acceleration, and
combinations of transpiration and acceleration. To be more precise, at

y+ = 2B+ s, the Reynolds number of turbulence, Ret » is equal to about 33.0
over the entire range of tests. In other words, with this'fact alope it is
possible to calculate B+ as a function of P+ and &; and to cbhtain
results that correspond remarkably closely to those represented by Egq. (23),
or Fig. 12, Thus the concept that the thickness of the viscous sublayer is
determined by a critical Reynolds number of turbulence seems at the present
time to be an attractive omne.

+
A and B+ as represented by Eqs. (21) and (23), were obtained unde

=

what might best be described as equilibrium conditions, i.e., conditions under

which v+
w

and/or P+ are invariant or at worst are varying only slowly along
the surface. Under non-equilibrium conditions where these parameters sre
changing rapidly or abruptly, it has been observed that the sublayer does

not change abruptly to its new equilibrium condition, i,e., B+ does not
immediately assume its new equilibrium value. Given the staBility nature of
the problem, this is probably not surprising. It can be hoped that some of
the higher order models of turbulence will predict this effect, but in the

meantime, a reasonably satisfactory expedient is to use a rate equation of a

type suggested by Launder [23]:
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dB
eff + +
T = Bagr ~ Bgg)/C (24)
dx
+ +
(or Aeff and Aeq)
+ . . + . + . o .
Beff is the effective value of B , while Beq is the equilibrium value

obtained from Eq. (23). A value of C of zbout L.0 has been found to he
reasonable.

All of the discussion up to now has been concerned with the inner
region of the boundary layer. The outer region,comprising the greater part of
the boundary layer thickness, is of comsiderably less importance in predicting
performance, and thus can be handled successfully using more gross approxi-
mations. This statement may not be valid for very non-equilibrium boundary
layers under adverse pressure gradient conditions, but how valid it actually
is for accelerating flows and for transpired boundary layers with and without
acceleration, will be demonstrated later. 1In any case, for equilibrium or
near equilibrium boundary layers, either the assumption of a constant value
of eddy diffusivity over the entire outer region, or the assumption of a
constant value of mixing~length over the entire outer region yields approxi-
mately the same result., If constant eddy diffusivity is used, an empirical
correlation of eddy diffusivity as a function of momentum thickness Reynolds
number can be obtained, However, if mixing-length is used in the inmner regiomns,
it is probably computationally simpler to use the mixing-length concept for the
entire boundary layer. A satisfactory scheme is to express the outer region

mixing-length as a fraction, A of the total boundary layer thickness.
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A = 0.085 or 0.080, based on the 99% boundary layer thickness, works
remarkably well for the entire range of test data on which this paper is based.
One simply evaluates ¢ from Eq. (15) until the value obtained exceeds
L = A6.99 , and then uses the latter value for the remainder of the boundary
layer.

At values of 'ﬁeM less than about 6.000 , there is some evidence that
A is greater., The following is an empirical fit that works reasonably
satisfactorily,
1/8

A = 0.25 Re_

" ; Re = 6000 (25)

M

Boundary layer predictions for strong blowing are somewhat improved if
this latter correction is not made., This may actually be indirect evidence
that the mixing-length constant, k , is lowered by strong blowing, but this

kind of discrimination is very difficult to make from the available data.
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A Model for Solution of the Energy Differential Equation of the Boundar

Layer - The time-averaged energy equation of the boundary layer, particu~-
larized to constant fluid properties and negligible viscous dissipation,
and neglecting turbulent conduction in the stream direction, may be written

as follows:

TELTE 2 ,E g -0 , (26)
9% ay ay day

This equation can be solved for any desired boundary conditions pro-

viding that the velocity field has been established first by solution of the

momentum equation, and providing that we have information on t'v' . For

convenience we introduce the concept of eddy diffusivity for heat, %H .

t'v? = —EH-E-; , (27)

Although it might be fruitful to attempt to evaluate t'v' or &
on the basis of assumptions that are independent of the turbulent shear

stress, it seems apparent that there is some kind of relationship between

t'v' and u'v' , or g and g . Therefore most analysts have found
it convenient to introduce the concept of turbulent Prandtl number, Prﬁ,

defined as follows:

Pr_ = (28)

ot |

Introducing Eqs. (27) and (28) into Eq. (26) we obtain:
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— 3, —st 8 | st |
u—;+v—;—a—yl>(ot+ Ei{/Prt) é;jl-—O (29)

If Prt were known, Eq. (29) could be solved for any desired
boundary conditions so long as the momentum equation must be solved anyway.
Evaluation of the turbulent Prandtl number is then one of the central prob-
lems of turbulent heat transfer.

A very simple physical model of the turbulent momentum and energy
transfer process leads to the conclusion that §i== ﬁn s 1.4, Prt = 1,00
(the "Reynolds Analogy"). Slightly more sophisticated models suggest that
Prt >1.00 for Pr < 1.00 , and still other models suggest that Prg equals
0.7 or 0.5 in turbulent wakes. The experimental data are not abundant,
but Figs. 15 and 16 show the measurements, respectively, of Simpson, Whitten,
and Moffat [24], and of Kearney, Moffat, and Kays [25], with air as a work-
ing substance. These were all evaluated from measurements of the slopes of
mean velocity and temperature profiles, together with estimates of shear
stress and heat flux distributions, and the experimental uncertaintyv is high.
The data on Fig. 15 are all for constant free-stream velocity, but cover a
wide range of blowing and suction conditions. The data on Fig. 16 are for
accelerated boundary layers with a considerable range of blowing and suction.

The choice of y+ as a basis for comparison is made only because a
slightly better correlation is obtained than with other parameters, but even
this fact is debatable. However, despite the very considerable scatter of
data, two conclusions seem definitely warranted. First, the turbulent
Prandtl number, at least for air, has an order of magnitude of unity. This

fact alone is significant, for it provides considerable justification for
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use of the concept of eddy diffusivity in the first place. The second
conclusion is that Prt is evidently less than 1.00 in the wake or ocuter
region, while it is greater than 1.00 near the wall. Very near the wall
the experimental uncertainty becomes excessive, so that it is not possible
to establish any limiting value in this rather critical region.

Another way of evaluating turbulent Prandtl number from experimental
temperature profiles is to determine by computer experiments the turbulent
Prandtl number function that must be used in order to predict given experi-
mental temperature profiles using Eq. (29) and any one of the models for
&1 previously discussed. In effect the experimental velocity profile is
partially removed from consideration, but different results for Prt will
be obtained depending upon how well the model for & reproduces true ve-
locity profiles.

Using this scheme, the results on Fig, 17 for the inner region were
obtained using the B+ damping function, Eq. (22), and experimental data for
several cases of blowing and acceleration, as well as some data based on the
average of several non-transpired, non-accelerated runs. B+ for each run
was evaluated from the corresponding velocity profile by a computer experi-
ment that forced the computed and measured velocity profiles to match at an
arbitrary y+ = 80 . The results are thus independent of velocity measure-
ments at very small values of y+ . For y+ > 30 there seems no question
that the most probable value of Prt is simply 1.00, i.e., the Reynolds
Analogy, regardless of transpiration or acceleration. On the other hand

there is a definite indication of much higher Prt for lower y+ . Note

. + . . .
of course that since only y < 100 is being considered, the lower Prt
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that seems characteristic of the outer region is not seen.

The same computer experiment performed with the A+ damping function
tends to yield values of Prt that average about 0.9 for y+ > 30 , but other~
wise the same conclusions are reached. However, since the B+ scheme gener-
ally predicts the velocity profiles more accurately in the region y+ < 100 ,
it would seem that the results on Fig. 17 more nearly represent the truth.

(The term "'truth" here must be qualified, because if At is being used in a
boundary layer prediction scheme, it is necessary to use values of Prt based
on A+ , even though these values differ from what might be measured directly.)

The absolute necessity for a high Prt at very low values of y+
is well illustrated by the data and calculations for temperature profile
shown on Fig. 13 for the case of no transpiration and no pressure gradient.

For y+ greater than about 30 two parallel lines describe the velocity and
temperature profiles very well. This can be interpreted as meaning that

Prt = 1,00 . However, if an attempt is made to predict the temperature pro-
file with Prt = 1,00 throughout, the result is as shown. A higher Prg is
needed for y+ < 30 to avoid badly underpredicting t+ in the y+ range

30 to 100. Closer examination reveals that it makes little difference how
high Prt is for y+ < 10 , and at y+ = 15 it is already too late to in-
troduce the correction. Apparently for y+ < 15 turbulent velocity fluctua-
tions result in a considerably greater rate of transport of momentum than of
heat for reasons that are not yet fully understood. The heat conduction model
of Jenkins [25] would predict this trend, but not the concentration of the

effect in this narrow region.

At the present time an empirical correlation of this effect seems the
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most practicable expedient if heat transfer rates are to be calculated. The
assumption of a constant value of Prt = 0.9 throughout the boundary laver
will yield overall heat transfer rates that are quite satisfactory: tempera-
ture profiles can be more accurately predicted if a variation of Prt with
y+ is introduced. The following correlations have been used successfully
by the writer for air:

If A+ is used as the damping function (Eq. 20):

1/4
Pr. = (1.43 - 0.17 sty + v:)

(30)
1f Prt < 0.85 ; Prt = 0.85

The dependence upon v; in Eq. (30) is not based on the raw Ptt
data in Figs. 15 and 16, but rather upon computer experiments using the
A% scheme for evaluation of &y -

If B+ is used as the damping function:

=+

Pr. =1+ .35[1 + cos(my /37)1; y& < 37

Pr_=1.00 ; y > 37 (31)

Pr. = 0.60 5 y > (A oo/

Figure 13 shows an example of an inner region temperature profile
prediction using the B+ damping function, and Eq. (31). Actually there
are any number of Prt functions that work equally well, and the cosine

function in Eq. (31) has no physical significance.
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Some Examples of Predictions of Difficult Cases - To illustrate the quality

of turbulent boundary layer predictions which can be made with a finite
difference program using some of the material presented in the preceding
sections, two rather difficult cases have been chosen. A modification of the
Spalding/Patankar [27] program was used, although any good finite difference

should yield similar results.

The first of these is illustrated on Fig. 18. Here is a case of rather
strong blowing, F = 0.0058 , subjected to a moderately strongly accelerated
free-stream along about half the length of the test section, with constant
free-stream velocity thereafter. The variation of U_ 1is shown at the top
of the diagram. This figure then shows a comparison between measured and

, C./2 , and St , plotted as functions of distance

predicted values of Re £

M
x along the test surface. (The fluid used was room temperature air with small
temperature differences,as was the case for all of the data considered in this
paper). Note that ReM is almost constant throughout the accelerated region,

a consequence of a constant-K accelerated boundary layer, as discussed earlier.

Following acceleration Re

M then increases rapidly. The comparison between

experiment and prediction must be considered excellent, especially when
experimental uncertainty is taken into consideration. This prediction was made
; + : . + .
using the A  damping function, but the B scheme will do equally as well.
Figures 18 and 20 are in some ways more impressive, for they show two
velocity profiles and two temperature profiles from the same test run, in real
dimensional coordinates, and a comparison between experiment and predictions.

In each case the profile at x = 45,6 inches 1is one taken in the
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accelerated region, while the other profile at x = 69.7 inches is taken
in the recovery region farther downstream.

Another difficult case is shown on Fig. 2l. In this run, the flow
starts at constant free-stream velocity but with moderately strong blowing,

F = ,004 . This flow is then subjected to a very strong acceleration starting at

x = 2 feet. In approximately the middle of the accelerated region the
blowing is removed entirely. Then at about x = 3.4 feet the acceleration
is removed, and for the remainder of the test section there is no blowing
and no acceleration., The Stanton numbe; prediction shown here was obtained
using the A+ scheme, although the outer region of the boundary laver was
calculated using a higher order turbulence model than the simple mixing-length
model described here. The turbulent kinetic energy equation was solved, and
%{ was determined from an assumed relationship between %ﬂ and the kinetic
energy of turbulence. However, it has been found that in flows of this type,
use of a turbulent kinetic energy model in the outer part of the boundary
layer contributes very little, and to all intents and purposes identical
results will be obtained with the simple mixing-length model.

The important thing to note here is that the model responds remarkably
to the abrupt changes in boundary conditions, and predicts the resulting
non-equilibrium boundary layer very well indeed. Of particular significance
is the abrupt rise in Stanton number following the removal of blowing. The

ability of the prediction to follow the data at this point is heavily dependent

upon the use of the rate equation and lag constant, Eq. (24).
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Future Work - The needed future research on heat transfer to the transpired
turbulent boundary layer can be subdivided into two general categories,

The first of these is research that is concerned with the turbulent boundary
layer in general, while the second is research particularized to the trans-
pired case. All advances in the general category will contribute to a better
understanding of the transpired boundary layer. Mention has already been made
of investigations into higher order models of turbulence, and as time goes omn
the results of these investigations can be expected to find their way into
transpired turbulent boundary layer theory and prediction methods.

The problem of turbulent Prandtllnumber, or more generally, the
problem of the turbulent transport of thermal energy, should provide a
particularly fruitful area for research in the near future. This is obvicusly
not a new problem; it was of great interest two decades ago when liquid metal
heat transfer was first being actively investigated. However, it is cleax
that a better theory is needed than is presently available.

For the particular case of the the transpired turbulent boundary layer,
the first obvious problem for which there is presently inadequaﬁe experimental
data is the case of an adverse pressure gradient. Actually, the case of
blowing and adverse pressure gradient is going to lead to early stall, so
it is probably the suction problem with an adverse pressure gradient that
provides the most scope for experimental work, It should be noted that
Egs. (21) and (23) will yield some numbers for use with adverse pressure
gradients, and since these numbers can be predicted by a theory that also
predicts the other casés relatively satisfactorily, one might be temped to

use these equations for predicting the adverse pressure gradient cases,
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However it should be emphasized that no experimental data for the adverse
pressure gradient cases has been used to generate these empirical equations.
In attempting té apply the transpiration results and theories
presented, two obvious practical problems arise., Real transpiration
surfaces frequently are aerodynamically rough, and real transpiration
surfaces frequently are constructed by drilling a large number of small
discrete holes in a surface rather than constructing the surface from a
sintered powder as was done for all of the experimental data considered
here., The roughness problem is presumably not totally unlike the roughness
problem for the non-transpired case, although the effects of tranmspiration
are at the present time completely unknown. The large hole problem opens up
an entire field of investigation because the number of possible geometrical
variables increases enormously. There is an entire spectrum of problems lying
between what might be called pure transpiration,with surface holes and spacing
small relative to the laminar sublayer thickness at one end, and film
cooling at the other end.
In a sense, the present paper has been concerned with only an
idealized case lying at one end of a very broad spectrum of turbulent

boundary layer problems.
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